
QUES 02

Mass m_1 moves on a slope making an angle θ with the horizontal and is attached to mass m_2 by a string passing over a frictionless pulley as shown in Fig. The coefficient of friction between m1 and the sloping surface is μ . Which of the following statements are true?

- a. If $m_2 > m_2 \sin \theta$, the body will move up the plane.
- b. If $m_2 > m_1 (\sin \theta + \mu \cos \theta)$, the body will move up the plane.
- c. If $m_2 > m_1 (\sin \theta + \mu \cos \theta)$, the body will move up the plane.
- d. If $m_2 > m_1 (\sin \theta + \mu \cos \theta)$, the body will move down the plane.
- Sol. Let's consider a case in which normal reaction i.e.

 $N = m_1 g \cos \theta$ from figure also we know friction

 ${\rm f}$ = μ N so ${\rm f}$ = $\mu{\rm m}_1$ g cos θ Now from figure taking whole as a system then

 $m_2 g - (m_1 g \cos \theta + f) > 0$ when m_1 will up and m_2 will down.

Putting f in this equation

- \Rightarrow m₂ g (m₁ g cos θ + μ m₁ g cos θ) > 0
- \Rightarrow m₂ g > m₁ g cos θ + μ m₁ g cos θ or in simply
- \Rightarrow m₂ > m₁ (sin θ + μ cos θ) from this option (a) is totally wrong while option (b) is correct.

Now if body m_1 moves down and m_2 moves up then, direction of friction force (f) becomes upward (opp. to motion)

Now if body m_1 moves down and m_2 moves up then, direction of friction force (f) becomes upward (opp. to motion)

- \Rightarrow m₁ g cos θ f > m₂ g
- \Rightarrow m₁g cos θ μ m₁ g cos θ > m₂ g
- \Rightarrow m₁(sin θ cos θ) > m₂

Hence option (d) is correct but option (c) is wrong.